手机浏览器扫描二维码访问
我们说的物理学的一个完整的统一理论是什么含义呢?我们对物理实在的模型通常由两个部分组成:
1。一族各种物理量服从的局部定律。这些定律通常被表达成微分方程。
2。一系列边界条件。这些边界条件告诉我们宇宙某些区域在某一时刻的状态以及后来从宇宙的其他部分传递给它的什么效应。
许多人宣称,科学的角色是局限于这两个部分的第一个,也就是说一旦我们得到局部物理定律的完整集合,理论物理也就功德圆满了。他们把宇宙初始条件的问题归入形而上学或者宗教的范畴。这个看法在某种方面像本世纪以前劝阻科学研究的那些人的观点,他们说所有自然现象都是上帝的事务,所以不应加以探索。我认为,宇宙的初始条件和局部科学定律可以同样地作为科学研究和理论的课题。只有在我们比仅仅宣称〃事情现在之所以如此是因为它过去是过去的那种样子〃更有作为时,我们才算有了一个完整的理论。
初始条件的唯一性问题和局部物理定律的任意性问题密不可分:如果一个理论包含有一些诸如质量或者偶合常数的人们可以随意赋值的可调节参数,则我们不把它当成是完整的。事实上,无论是初始条件还是理论中的参数值似乎都不是任意的,它们是被非常仔细地选取或者挑选出来的。例如,质子——中子质量差若不为两倍电子质量左右,人们就不能得到大约二百种稳定的核,这些核构成元素,并且是化学和生物的基础。类似的,如果质子的引力质量非常不同,就不能得到这些核在其中合成的恒星。此外,如果宇宙的初始膨胀稍微再慢一些或稍微再快一些,则宇宙就会在这种恒星演化之前就坍缩了,或者会膨胀得这么迅速,使得恒星永远不可能由引力凝聚而形成。
的确,有些人走得如此之远,他们甚至把对初始条件和参数的这些限制提高到原理的地位,这就是人择原理,可以把它叙述如下:〃事物之所以如此是因为我们如此。〃根据这一原理的一种版本,存在非常大量不同的分开的宇宙,它们具有不同的物理参数值和初始条件。这些宇宙中的大多数不能为智慧生命所需要的复杂结构发展提供恰当的条件。只有在少数具有和我们自己宇宙的类似的条件和参数的宇宙中,才可能让智慧生命得以发展,并且询问道:〃宇宙为何像我们所观测的那样?〃其答案当然是,如果宇宙换一种样子,就不存在任何人去问这个问题。
人择原理的确为许多令人注目的数值关系提供了某种解释,我们在不同的物理参数值之间可以观察到这些关系。然而,它不是完全令人满意的。人们不禁觉得应该存在某种更深刻的解释。此外,它不能解释宇宙中的所有区域。例如,我们太阳系肯定是我们存在的先决条件,先决条件还包括更早代的邻近恒星,重元素可由核聚变在这些恒星中形成。甚至我们整个银河系也是必须的。但是似乎其他星系没有必要存在,更不用说在整个能观测到的宇宙中大体均匀分布的我们看得见的亿万个星系了。宇宙的大尺度均匀性使如下的论证非常难以使人信服,像在一颗小行星上的某种复杂的分子结构这么外在的微不足道的东西决定了宇宙的结构,这颗行星绕着一颗在相当典型的螺旋星系的外部区域的一颗非常平凡的恒星公转。
如果我们不准备借助于人择原理,就需要某种统一理论来解释宇宙的初始条件和各种物理参数值。然而,要一蹴而就地杜撰出一种包罗万象的完整理论是太困难了(虽然这似乎不能阻止某些人这么做,我每周都从邮政收到两三种统一理论)。相反的,我们要做的是寻找部分理论,它能描述在忽视或以简单方式去近似某些相互作用下的情形。我们首先把宇宙的物质内容分成两个部分:〃物质〃即为诸如夸克、电子和缪介子等粒子,以及〃相互作用〃诸如引力和电磁力等等。物质粒子由具有半自旋的场来描写,它服从泡利不相容原理,该原理保证同一状态下最多只能有一颗同类的粒子。这就是我们能有不坍缩成一点或辐射到无穷远去的固体的原因。物质要素又分成两组:由夸克组成的强子,以及包括其余的轻子。
相互作用被唯象地分成四个范畴。它们按照强度依序为:强核力,这只是强子之间的相互作用;电磁力,它是在带电荷的强子和轻子之间的相互作用;弱核力,它是在所有强子和轻子之间的相互作用;最后还有迄今为止最弱的,即引力,它是在任何东西之间的相互作用。这些相互作用由整自旋的场所表示,这些场不服从泡利不相容原理。这表明它们在同一态上可有许多粒子。在电磁力和引力的情形下,其相互作用还是长程的,这表明由大量物质粒子产生的场可以叠加起来,得到在宏观尺度上能被检测到的场。正因为这些原因,它们首先获得为之发展的理论:十七世纪牛顿的引力论,以及十九世纪马克斯韦的电磁理论。牛顿理论在整个系统被赋以任何均匀的速度时保持不变,而马克斯韦理论定义了一个优越的速度——光速,所以这两种理论在本质上是相互矛盾的。人们最后发现,牛顿引力论必须被修正,使之和马克斯韦理论的不变性相协调。爱因斯坦在1915年提出的广义相对论达到了这种目的。
引力的广义相对论和电磁力的马克斯韦理论是所谓的经典理论。经典理论牵涉到至少在原则上可以测量到任意精度的连续变化的量。然而,当人们想用这种理论去建立原子的模型时产生了一个问题。人们发现,原子是由一个很小的带正电荷的核以及围绕它的带负电荷的电子云组成的。自然的假定是,电子绕着核公转,正如地球绕着太阳公转一样。但是经典理论预言,电子会辐射电磁波。这些波会携带走能量,并因此使电子以螺旋轨道撞到核上去,导致原子坍缩。
量子力学的发现克服了上述的困难。它的发现无疑是本世纪理论物理的最伟大的成就。其基本假设是海森堡的不确定性原理,它是讲某些物理量的对,譬如讲一颗粒子的位置和动量不能同时以无限的精度被测量。在原子的情形下,这表明处于最低能态的电子不能静止地呆在核上。这是因为在这种情形下,其位置是精确定义的(在核上),而且它的速度也被精确地定义(为零)。相反的,不管是位置还是速度都必须围绕着核以某种概率分布抹平开来。因为电子在这种状态下没有更低能量的状态可供跃迁,所以它不能以电磁波的形式辐射出能量。
在本世纪的二十年代和三十年代,量子力学被极其成功地应用到诸如原子和分子的只具有有限自由度的系统中。但是,当人们尝试将它应用到电磁场时引起了困难,电磁场具有无限数目的自由度,粗略地讲,时空的每一点都具有两个自由度。这些自由度可被认为是一个谐振子,每个谐振子具有各自的位置和动量。因为谐振子不能有精确定义的位置和动量,所以不能处于静止状态。相反的,每个谐振子都具有所谓零点起伏和零点能的某一最小的量。所有这些无限数目的自由度的能量会使电子的表观质量和电荷变成无穷大。
在本世纪四十年代晚期,人们发展了一种所谓的重正化步骤用来克服这个困难。其步骤是相当任意地扣除某个无限的量,使之留下有限的余量。在电磁场的情形,必须对电子的质量和电荷分别作这类无限扣除。这类重正化步骤在概念上或数学上从未有过坚实的基础,但是在实际中却相当成功。它最大的成功是预言了氢原子某些光谱线的一种微小位移,这被称为蓝姆位移。然而,由于它对于被无限扣除后余下的有限的值从未做出过任何预言,所以从试图建立一个完整理论的观点看,它不是非常令人满意的。这样,我们就必须退回到人择原理去解释为何电子具有它所具有的质量和电荷。
在本世纪五十年代和六十年代,人们普遍相信,弱的和强的核力不是可重正化的,也就是说,它们需要进行无限数目的无限扣除才能使之有限。这样就遗留下无限个理论不能确定的有限余量。因为人们水远不能测量所有这些无限个参量,所以这样的一种理论没有预言能力。然而,1971年杰拉德·特符夫特证明了电磁和弱相互作用的一个统一模型的确是可重正化的,只要做有限个无限扣除。这个模型是早先由阿伯达斯·萨拉姆和史蒂芬·温伯格提出的。在萨拉姆——温伯格理论中,光子这个携带电磁相互作用的自旋为1的粒子和三种其他的自旋为1的称为W+,W…和Z°的伙伴相联合。人们预言,所有这四种粒子在非常高的能量下的行为都非常相似。然而,在更低的能量下人们用所谓的自发对称破缺来解释如下事实,光子具有零静质量,而W+、W…和Z°都具有大质量。该理论在低能下的预言和观测符合得十分好,这导致瑞典科学院在1979年把诺贝尔物理奖颁给萨拉姆、温伯格和谢尔登·格拉肖。格拉肖也建立了类似的理论。然而,因为我们还没有足够高能量的粒子加速器,它能在由光子携带的电磁力以及由W+、W…和Z°携带的弱力真正发生相互统一的范畴内检验理论,所以正如格拉肖自己评论的,诺贝尔委员会这次实际上冒了相当大的风险。人们在几年之内就会拥有足够强大的加速器,而大多数物理学家坚信,他们会证实萨拉姆——温伯格理论'10'。
'10'作者注:事实上,1983年人们在日内瓦的欧洲核子中心观测到W和Z粒子。1984年另一次诺贝尔奖颁给了卡拉·鲁比亚和西蒙·范德·米尔,他们领导的小组作了此发现。只有特符夫特失去了得奖机会。
萨拉姆——温伯格理论的成功诱使人们寻求强作用的类似的可重正化理论。人们在相当早以前就意识到,质子和诸如π介子的其他强子不能是真正的基本粒子,它们必须是其他,叫做夸克的粒子的束缚态。这些粒子似乎具有古怪的性质:虽然它们能在一颗强子内相当自由地运动,人们却发现得不到单独夸克自身。它们不是以三个一组地出现(如质子和中子),就是以包括夸克和反夸克的对出现(如π介子)。为了解释这种现象,夸克被赋予一种称作色的特征。必须强调的是,这和我们通常的色感无关,夸克太微小了,不能用可见光看到,它仅是一个方便的名字。其思想是夸克带有三种色——红、绿和蓝——但是任何孤立的束缚态,譬如讲强子必须是无色的,要么像是在质子中是红、绿和蓝的组合,要么像在n介子中是红和反红、绿和反绿以及蓝和反蓝的混合。
人们假定,夸克之间的强相互作用由称作胶子的自旋为1的粒子携带。胶子和携带弱相互作用的粒子相当相像。胶子也携带色,它们和夸克服从称作量子色动力学(简称为QCD)的可重正化理论。重正化步骤的一个结论是,该理论的有效耦合常数依所测量的能量而定,而且在非常高的能量下减少到零。这种现象被称作渐近自由。这表明强子中的夸克在高能碰撞时的行为几乎和自由粒子相似,这样它们的微扰可以用微扰理论成功地处理。微扰理论的预言在相当定性的水平上和观测一致,但是人们仍然不能宣称这个理论已被实验验证。有效耦合常数在低能下变成非常大;这时微扰理论失效。人们希望这种〃红外束缚〃能够解释为何夸克总被禁闭于无色的束缚态中,但是迄今为止没有人能真正信服地展现这一点。
在分别得到强相互作用和弱电相互作用的可重正化理论之后,人们很自然要去寻求把两者结合起来的理论。这类理论被相当夸张地命名为〃大统一理论〃或简称为GUT。因为它们既非那么伟大,也没有完全统一,还由于它们具有一些诸如耦合常数和质量等等不确定的重正化参数,因此也不是完整的,所以这种命名是相当误导的。尽管如此,它们也许是朝着完整统一理论的有意义的一步。它的基本思想是,虽然强相互作用的有效耦合常数在低能量下很大,但是由于渐近自由,它在高能量下逐渐减小。另一方面,虽然萨拉姆——温伯格理论的有效耦合常数在低能量下很小,但是由于该理论不是渐近自由的,它在高能量下逐渐增大。如果人们把在低能量下的耦台常数的增加率和减少率向高能量方向延伸的话,就会发现这两个耦合常数在大约10↑15吉电子伏能量左右变成相等。(一吉电子伏即是十亿电子伏。这大约是一颗氢原子完全转变成能量时所释放出的能量。作为比较,在像燃烧这样的化学反应中释放出的能量只具有每原子一电子伏的数量级。)大统一理论提出,在比这个更高的能量下,强相互作用就和弱电相互作用相统下,但是在更低的能量下存在自发对称破缺。
10↑15吉电子伏能量远远超过目前的任何实验装置的范围。当代的粒子加速器能产生大约10吉电子伏的质心能量,而下一代会产生100吉电子伏左右。这对于研究根据萨拉姆——温伯格理论电磁力应和弱力统一的能量范围将是足够的,但是它还远远低于实现弱电相互作用和强相互作用被预言的统一的能量。尽管如此,在实验室中仍能检验大统一理论的一些低能下的预言。例如,理论预言质子不应是完全稳定的,它必须以大约10↑31年的寿命衰减。现在这个寿命的实验的低限为10↑30年,这应该可以得到改善。
另一个可观测的预言是宇宙中的重子光子比率。物理定律似乎对粒子和反粒子一视同仁。更准确地讲,如果粒子用反粒子来替换,右手用左手来替换,以及所有粒子的速度都反向,则物理定律不变。这被称作CPT定理,并且它是在任何合理的理论中都应该成立的基本假设的一个推论。然而地球,其实整个太阳系都是由质子和中子构成,而没有任何反质子或者反中子。的确,这种粒子和反粒子间的不平衡正是我们存在的另一个先决条件。因为如果太阳系由等量的粒子和反粒子所构成,它们会相互湮灭殆尽,而只遗留下辐射。我们可以从从未观测到这种湮灭辐射的证据得出结论,我们的星系完全是由粒子而不是由反粒子组成的。我们没有其他星系的直接证据,但是它们似乎很可能是由粒子构成的,而且在整个宇宙中存在粒子比反粒子的大约每10↑8个光子一颗粒子的过量。人们可以采用人择原理对此进行解释,但是大统一理论实际上提供了一种可能的机制来解释这个不平衡。虽然所有相互作用似乎都在C(粒子用反粒子来取代),P(右手改变成左手)以及T(时间方向的反演)的联合作用下不变,人们已经知道,有些作用在T单独作用下不是不变。在早期宇宙,膨胀给出非常明显的时间箭头。这些相互作用产生的粒子就会比反粒子多。然而它们产生的数量太过依赖于模型,使得和观测的相符根本不能当作大统一理论的证实。
迄今为止的大部分努力是用于统一前三种物理相互作用,强核力、弱核力以及电磁力。第四种也就是最后一种的引力被忽略了。为这么做的一个辩护理由是,引力是如此之微弱,以至于量子引力效应只有在粒子能量远远超过任何粒子加速器的能量下才会显著起来。另一种原因是,引力似乎是不可重正化的。人们为了得到有限的答案,就必须作无限个无限扣除,并相应地留下无限个不能确定的有限余量。然而,如果人们要得到完全统一的理论,就必须把引力包括进来。此外,广义相
一个现代人,来到了古代,哇噻,美女如云呀,一个一个都要到手,战争阴谋铁血一揽众美,逍遥自来快乐似神仙本书集铁血与情感于一身为三国类中佳品。...
一个被部队开除军籍的特种兵回到了都市,看他如何在充满诱惑的都市里翻云覆雨...
两年前,僵尸面瘫男左莫被无空山掌门捡回了门派,失去记忆的他过着忙碌却充实的生活,一心想要赚晶石,一直在灵植上下苦功,终于如愿成为灵植夫,从不受待见的外门弟子跻身成为炙手可热的内门弟子。一个偶然的机会,左...
神墓动画第二季,8月10日起每周六1000,优酷全网独播一个死去万载岁月的平凡青年从远古神墓中复活而出...
赵敏的娇蛮狐媚周芷若的举止优雅小昭的温柔体贴不悔的秀丽美艳蛛儿的任性刁蛮 一梦醒来,该是倚天屠龙的另一个新主角上场了...
前世孤苦一生,今世重生成兽,为何上天总是这样的捉弄!为何上天总是那样的不公!他不服,不服那命运的不公。自创妖修之法,将魔狮一族发展成为能够抗衡巨龙的麒麟一族,成就一代麒麟圣祖的威名。...